
Multipass SQL

A Step By Step Guide for BOE XIr2

Version 1.0
April 15, 2008

Background...3

What is it? ...3
How is it done?..3
Why is it important?...3
Does Business Objects support multi-pass? ...4
What about our competition? ..4
How does Business Object’s handle multi-pass?..4

Sharing dimensions across multiple fact tables ...4
Mixing the grains of measurement in the same query5
Defined calculations that require an end result as one of its factors5
Need of semi-additive measures ...5
Analyzing a subset of data...5

What is a derived table?..5
Scenarios..7

Example Data..7
Scenario 1: Multiple Fact Tables ...8
Scenario 2: Varying Grains of Measurement...18
Scenario 3: Advanced Calculations...34
Scenario 4: Semi-additive Measures...51
Scenario 5: Analyzing Data Subsets ...73

Xcelsius and Multi-pass SQL ..87
Appendix A – BOE Release Dependency...93
Footnotes..94

Background

What is it?

Multi-pass SQL refers to the creation of multiple queries against a database to
accomplish complex comparisons to answer sophisticated questions. These
inquiries may seem difficult or surprisingly easy. Often business questions are
easy to ask, but very difficult to answer without thinking in terms of multiple
passes against the database. The logical approach to answering such questions
is to break it down into its components and then pool the answers to each
component together for the final response. Multi-pass SQL appears in many
situations. These include:

1. Sharing dimensions across multiple fact tables.
2. Mixing the grains of measurement in the same query such as year-to-date

and month-to-date.
3. Defined calculations that require an end result as one of its factors.
4. The need of semi-additive measures such as account balances and

ending inventory.
5. Analysis on a subset of data and possibly comparing it to the whole or

another subset.

How is it done?

The concept is that to achieve a specific analysis a series of queries is executed
against a database. The results of each query are then combined in such a way
to ensure that the desired analysis is attained. The traditional approach is to
issue multiple queries against the database while storing the intermediate results
in temporary tables. Once all the queries are completed the temporary tables are
queried for the final result. However, Ralph Kimball has defined multi-pass
capability as the ability of “the query tool (to) break the report down into a number
of simple queries that are processed separately by the DBMS” and “then
automatically (combining) the results of the separate queries in an intelligent
way”. 1

Why is it important?

“SQL does not have the ability to perform multidimensional calculations in single
statements, and complex multi-pass SQL is necessary to achieve more than the
most trivial multidimensional functionality.”2 The main objective is to provide the
end user the answer to their questions. If multi-pass SQL can be achieved in way
that also simplifies the query experience for the end user, this all the better. So
obviously the preferred method is that end user can obtain the correct results by
building one query instead of several.

Does Business Objects support multi-pass?

Yes. According to Kimball, “Tools like Cognos, Business Objects, and
Microstrategy are quite capable of handling multi-pass SQL.” 3

What about our competition?

Microstrategy has stressed the importance of multi-pass SQL for years. The
competitive tour section of their website states that Business Objects has “limited
support for advanced analysis”. This is due to its “single-pass SQL engine which
does not fully leverage database processing features” resulting in “limited support
for advanced analysis”. This statement is made for all their competitive vendors
that access relational data.

It is best to assume that all BI vendors can achieve some level of multi-pass
SQL. The difference is in which situations multi-pass can be invoked, simplicity of
work flow, and the methodology used to achieve multi-pass. In addition to these
concerns one must also be aware of on which groups of users is placed the
burden of the multi-pass SQL solution.

The groups can roughly be separated into report consumers, report creators, and
semantic layer developers. In a pure ad hoc scenario the report consumers and
creators are the same. Some solutions may require the report consumer to
respond to many prompts opening the door to incorrect answers or inconsistency
between users. Other solutions may place the burden on the report creators in
the form of multiple queries. Similar reports may require the same queries to be
created over and over again. Ideally the solution is implemented at the semantic
layer as the solution would be created once in a central location ensuring
consistency across reports and queries. Usually solutions at the semantic layer
also ensure the most simplicity when a report is executed.

How does Business Object’s handle multi-pass?

Business Objects creates multi-pass SQL in a variety of ways depending upon
the situation requiring it. Let’s take the previously mentioned multi-pass situations
one by one.

Sharing dimensions across multiple fact tables

A Universe parameter exists that forces multiple SQL statements to be generated
when measures are retrieved from different tables. Even though the parameter is
labeled as “Multiple SQL statements for each measure” it only applies when the
measures being retrieved involve different tables. It is enabled (checked) by
default.

Mixing the grains of measurement in the same query

In cases when a measure needs to according to different time spans such as
current month and last month a combination of alias tables and contexts will
produce multiple SQL statements to be produced. The fact table is aliased once
for each time span with separate measure objects created from each alias. The
measure objects can then be combined in a single query along with the required
dimensions. The existence of the contexts will cause multiple SQL statements to
be created.

Defined calculations that require an end result as one of its factors

Ratios are a good example of such a calculation. A ratio of each category’s sales
to total sales can be accomplished by using a derived table to calculate the total
sales amount. The total for all sales must be obtained first. Then the total sales
amount is then retrieved for each category and divided by the overall total
previously retrieved.

Need of semi-additive measures

Semi-additive measures include ending inventory and account balances. Ending
inventory can be summed across product or location but not time. In these
situations a derived table is built for each required timeframe. Aggregate
awareness is then used to navigate between the derived tables. The use of the
“query drill” report property also allows one drill from year end balance to quarter
end balance to month end balance and so on.

Analyzing a subset of data

Often situations exist that require the analysis of a subset of data. The analysis of
that subset may then be compared to the whole set of data or to another subset.
Such situations may require that the most recent status update or transaction
record be retrieved for each account. A derived table can be used to filter out
unwanted data, leaving only the most current status or transaction record. Using
such a filter within the query panel allows analysis to proceed using the full range
of Business Objects’ capabilities.

Each one of these scenarios will be discussed in further detail.

What is a derived table?

“A derived table is a SQL construct consisting of a SELECT statement embedded
in the FROM clause of another select statement. Derived table support is
required for full ANSI-92 SQL conformance. A variety of names are used to refer
to derived tables including: table subqueries, nested queries, and table value
constructors (the formal ANSI-92 SQL name). Use of derived tables reduces the

total number of SQL passes required to answer a complex query. Multi-pass
queries that are multi-dimensional, contain metric qualification, split facts, or
outer joins can be constructed with derived tables.”4

Derived tables are not the same as volatile tables. A volatile table is a form of
temporary table which is created in memory and whose life extends only for the
current session. As volatile tables do not access the database system
catalogues, they are not logged and can not be recovered. After its creation, a
volatile table is treated just as any another table in a select statement.

In the multi-pass scenario, derived tables can be used to join
selection/calculation created in the FROM clause which is then joined to the
result set of the main query. As such, calculations can be moved from the report
level to the Universe. For example, instead of requiring a ratio to be created as a
report variable it can be a Universe object which can be selected within the query
panel. Reducing the need for report variables simplifies the report creation
process.

Scenarios

Example Data

The initial test is a very simple. The database contains one dimension table
(MP_T1_Cat) and two fact tables, MP_T1_Sales and MP_T1_Calls. Figures 1
through 4 display the raw data, row by row. Figures 5 and 6 show the summary
totals by category id.

Detail
MP_T1_Cat MP_T1_Sales MP_T1_Calls

Figure 1: Category Data Figure 2: Sales Data Figure 3: Call Data

Summary

Figure 4: Categories Figure 5: Sales Summary Figure 6: Call Summary

Scenario 1: Multiple Fact Tables

Universe
The initial Universe is shown Figure 7.

Figure 7: Initial Table Joins for Universe

A few objects are created for the Universe as shown in Figure 8.

Figure 8: Initial Universe Objects

The Nbr Calls object is identified as sum(MP_T1_Calls.Nbr_Calls) and the Sales
object is defined as sum(MP_T1_Sales.Sales).

Suppose one needs to report on the number of sales calls made by product
category along with the dollar sales by category. Initially one may be tempted to
try a simple SQL query as shown below.

SELECT

MP_T1_CAT.Category, MP_T1_CAT.Cat_Id,

sum(MP_T1_Calls.Nbr_Calls),

sum(MP_T1_Sales.Sales)

FROM

MP_T1_Cat, MP_T1_Calls, MP_T1_Sales

WHERE

MP_T1_Cat.Cat_Id = MP_T1_Calls.Cat_id

AND MP_T1_Cat.Cat_Id = MP_T1_Sales.Cat_Id

GROUP BY MP_T1_CAT.Category,

MP_T1_CAT.Cat_Id

Figure 9: Erroneous attempt to return aggregated columns from two tables in a single
SELECT

However such a query will not return correct results. Since the two fact tables are
sharing the dimension table the query will retrieve rows from each fact table
multiple times. If the dimension value occurs 3 times in the second fact table then
that dimensional value in the first fact table will be overstated by a fact of 3. This
is discussed in more detail later (Figure 19). This is a limitation of SQL, not of
Business Objects or any other BI tool, and is the same across all relational
databases.

Using the traditional approach of multi-pass SQL, five (5) steps are required. The
first step is to create a table to house temporary results.

CREATE TABLE Sales_and_Calls

 (Cat_Id integer, Nbr_Calls integer, Sales decimal(10,2))

Next, the number of calls by category is inserted into the work table.

INSERT INTO Sales_and_Calls (Cat_Id, Nbr_Calls, Sales)

 SELECT MP_T1_Calls.Cat_ID,

 sum(MP_T1_Calls.Nbr_Calls), 0

 FROM MP_T1_Calls

 GROUP BY MP_T1_Calls.Cat_Id

The third phase is to load the sales by category into the table.

INSERT INTO Sales_and_Calls (Cat_Id, Nbr_Calls, Sales)

 SELECT MP_T1_Sales.Cat_ID, 0,

 sum(MP_T1_Sales.Sales)

 FROM MP_T1_Sales

 GROUP BY MP_T1_Sales.Cat_Id

At this point the values within the temporary table are shown below in Figure 10.

Figure 10: Values within the temporary table after two passes

At this time all the required results exist in the temporary table. The next stage is
to retrieve the results for the report by joining the temporary table to the category
descriptions.

SELECT MP_T1_Cat.Cat_Id, Category, sum(Nbr_Calls), sum(Sales)

FROM Sales_and_Calls JOIN MP_T1_Cat

ON MP_T1_Cat.Cat_Id = Sales_and_Calls.Cat_Id

GROUP BY MP_T1_Cat.Cat_Id, Category

ORDER BY MP_T1_Cat.Cat_Id

The results that are finally obtained are correct.

Figure 11: Final results using a traditional multi-pass approach

And last but not least, one must always cleanup after themselves. The final step
is to delete the temporary work table.

DROP TABLE Sales_and_Calls

In this simple example, two passes of the database schema were required in
addition to pulling the final results for reporting. Along with this activity is the
creation and deletion of the temporary table. This “traditionalist” approach is very
database centric and assumes very limited capability on the reporting/analysis
tier. Not being bound by such limitations Business Objects approaches the
solution from a different angle.

An initial query is built with the Web Intelligence query panel (Figure 12).

Figure 12: Web Intelligence Query Panel result objects

The query does return the correct results (Figure 13) when compared to Figures
5 and 6.

Figure 13: Web Intelligence query results

So how was the SQL generated to obtain the correct results? Two query
statements were generated (Figure 14 and Figure 15) with the result sets
combined by the Business Objects server. These two SELECT statements bear
a strong resemblance to those used to insert data into the temporary table when
using the traditional approach.

Figure 14: First select returns the number of calls by category

Figure 15: Second select returns the total sales by category

Why did this occur? The defaulting setting for a Universe is to have Multiple SQL
statements for each measure enabled (Figure 16). As mentioned before a more
accurate definition of this parameter is to have multiple SQL statements for each
table from which measures are defined.

Figure 16: Universe Parameters, SQL tab

What happens is if this option is disabled as done in Figure 17?

Figure 17: “Multiple SQL Statements for each measure” option disabled

With the exact same objects selected the query engine generates a single
statement (Figure 18). This is very similar to the SQL shown in Figure 9.

Figure 18: Generated SQL with “Multiple SQL Statements for each measure” disabled

Will the results still be correct? The answer is No as proven by the results shown
in Figure 19.

Figure 19: Incorrect results due to “Multiple SQL Statements for each measure” disabled

What happened? This is an example of a Chasm Trap so often mentioned as
one of the issues that be overcome by proper Universe design. Let’s take a
closer look at the totals for Electronics. As seen in Figure 13, the correct number
of calls is 30 and the correct amount of sales is 39, 915. This means that calls
have been overstated by a factor of 4 (120/40) and sales have been overstated
by a factor of 3 (119,745/39,915). Looking at the Electronics category, according
to Figure 2, there are 4 entries in the sales fact table while Figure 3 shows there
are 3 entries in the calls fact table. So the number of calls has been replicated 4
times, one time for each entry in the sales fact table. The total sales have been
replicated 3 times, one time for each entry in the calls fact table. A chasm trap is
a limitation of SQL, not due to anything within Business Objects.

What if there is a need to disable the Multiple SQL statements for each measure
option? Is there a way to still obtain correct results? The answer is Yes; Contexts
can be used to also deliver correct results. Contexts define multiple paths
between tables. If cardinality has been properly identified they can be
automatically generated (Figure 20).

Figure 20: Automatic detection of candidate contexts

Choosing a candidate context will highlight all joins and tables (Figure 21) that
will be members of that context if created.

Figure 21: Tables and joins to be included in a context

Using the control and shift keys multiple candidate contexts can be added at one
time (Figure 22). Highlight the desired contexts and select Add >>. Once all
desired contexts appear under Accepted Contexts then click OK.

Figure 22: Adding multiple contexts

To view existing contexts, select List Mode from the View menu option (Figure
23).

Figure 23: Activating List Mode

Viewing existing contexts is important as their number increases (Figure 24).

Figure 24: Universe design panel with List Mode activated

Selecting a context from this window will highlight the joins and tables that are
members of the selected context. The joins that are members of a context can be
modified by altering the Context Properties. In situations involving many
contexts, it is highly recommended to not manually add or remove joins to a
context. If new tables are added to the Universe, deleting all existing contexts
and then detecting all required contexts is the recommended approach.
Occasionally the joins that make up a context may need to be manually adjusted
after detection. Any manual adjustments to a context are lost when that context is
deleted. If it is necessary to manual adjust joins within a context be sure to
document these joins. Shortcut joins are a good example of when manual
adjustments may be necessary. Shortcut joins are not made part of a context
when the automatic detection is used. So if a shortcut join needs to be part of a
context it must be manually added to the context.

Figure 25: Accessing Context Properties

With the two contexts now defined and the Multiple SQL statements for each
measure option disabled the correct SQL (Figure 14 and Figure 15) is generated
leading to the same correct results seen in Figure 13.

So we have now seen an example of to resolve the first multi-pass scenario,
sharing dimensions across multiple fact tables. In fact we have seen two
methods. The suggested approach is to leave the Multiple SQL statements for
each measure option enabled unless there is specific need to do otherwise. Plus
use the ability to automatically detect and create contexts within the Universe.
This two pronged approach is recommended. But how is this multi-pass SQL?
We have seen that in these circumstances, multiple SQL statements are
generated. The returned result sets are then combined by the Business Objects
server. If we go back to Kimball’s definition of multi-pass, the query has definitely
been broken down into simple queries, and executed separately by the RDBMS.
The result sets have then been automatically combined to deliver the correct
results.

As a side note, there is now a Universe parameter, JOIN_BY_SQL, that when set
to Yes will combine multiple SQL statements into one. Each of the previously
separate queries becomes a derived table in the FROM clause with the
COALESCE function used to combine each of the SQL statements along the
common dimensions. In this scenario only one result set will be returned to
Business Objects. So when using this option the RDBMS executes the multiple
queries and combines the result set. In general better overall performance will be
seen using this option set to Yes.

Scenario 2: Varying Grains of Measurement

The next multi-pass scenario is the mixing of grains of measurement in the same
query. Often reports will need to compare the number of units sold this month
with the number of units sold last month. To work through this scenario we will
introduce a processing calendar into the database schema. For this example the
data is depicted in Figure 26.

Figure 26: Processing Calendar Data

Using the traditional solution is very similar to the previous multi-pass scenario
and also requires five (5) steps are. The first step is to create a table to house
temporary results.

CREATE TABLE This_and_Last

 (Cat_Id integer, This_Month_Calls integer, Last_Month_Calls integer)

Next, the number of calls by category for the current month is inserted into the
work table.

INSERT INTO This_and_Last (Cat_Id, This_Month_Calls, Last_Month_Calls)

 SELECT MP_T1_Calls.Cat_ID, sum(MP_T1_Calls.Nbr_Calls), 0

FROM MP_T1_Calls, MP_T1_Calendar

WHERE (MP_T1_Calendar.Month_ID = MPP_T1_Calls.Month_Id

AND (MP_T1_Calendar.Month_Rpt_Desc ='Current Month')

GROUP BY MP_T1_Calls.Cat_Id

The third phase is to load the number of calls for the previous month by category
into the table.

INSERT INTO This_and_Last (Cat_Id, This_Month_Calls, Last_Month_Calls)

 SELECT MP_T1_Calls.Cat_ID, 0, sum(MP_T1_Calls.Nbr_Calls)

FROM MP_T1_Calls, MP_T1_Calendar

WHERE (MP_T1_Calendar.Month_ID = MP_T1_Calls.Month_Id)

AND (MP_T1_Calendar.Month_Rpt_Desc = 'Current Month - 1')

 GROUP BY MP_T1_Calls.Cat_Id

The values currently within the temporary table are shown in Figure 27.

Figure 27: Values within the temporary table after two passes

At this point the required results are in the temporary table. The next stage is to
retrieve the results for the report by joining the temporary table to the category
descriptions.

SELECT MP_T1_Cat.Cat_Id, Category, sum(This_Month_Calls),

 sum(Last_Month_Calls)

FROM This_and_Last JOIN MP_T1_Cat

ON MP_T1_Cat.Cat_Id = This_and_Last.Cat_Id

GROUP BY MP_T1_Cat.Cat_Id, Category

ORDER BY MP_T1_Cat.Cat_Id

The results that are finally obtained are correct.

Figure 28: Final results using a traditional multi-pass approach

And last but not least, one must always cleanup after themselves. The final step
is to delete the temporary work table.

DROP TABLE This_and_Last

In this example, two passes of the database schema were required in addition to
pulling the final results for reporting. Along with this activity is the creation and
deletion of the temporary table. This “traditionalist” approach is very database
centric and assumes very limited capability on the reporting/analysis tier. Not
being bound by such limitations Business Objects offers a few possible solutions.

One way to solve this situation is to create multiple queries, one for this month
and another for last month. As Web Intelligence now allows multiple queries this
is now a legitimate solution. The first step is to pull the calendar into the Universe
(Figure 29).

Figure 29: Calendar added to universe

The queries would differ only within Query Filters section of the query panel; the
Result Objects in most cases are identical (Figure 30 and Figure 31).

Figure 30: Current Month query

Figure 31: Previous Month query

There area few reasons why this is not the optimal solution. The first is that the
burden is placed on the report developer. Multiple queries have to be created;
one query for each desired timeframe is required. If this is a common request
then this quickly becomes a tiresome process. Secondly, this solution will only
work with Web Intelligence and Desktop Intelligence; It will not work with Crystal
Reports or Query as a Web Service. In addition dimensions are automatically
merged but measures are not (Figure 32). In Figure 32 the Sales Amount initially
displayed is from the previous month query. The Sales Amount for the current
month is not shown at all.

Figure 32: Initial query results using multiple queries

To correct this and also provide meaningful column headers two report variables,
one for current month (Figure 33) and another for previous month (Figure 34),
are created.

Figure 33: Report variable for current month sales

Figure 34: Report variable for previous month sales

Once the variables are created they can be used to create the correct and
expected results (Figure 35).

Figure 35: Final results using multiple queries

To satisfy Kimball’s definition of multi-pass one could also argue that this solution
fails the combining of the result sets in an “intelligent way” test. But if separate
Universe objects can be created that would then force multiple SQL statements
to be generated then Kimball’s definition would be met.

One common solution that does this is to embed the desired time comparison
within the Universe object by using a case statement. As seen in Figure 35 a
comparison is made against the date table for the previous month indicator. If
this is the case then the sales amount is included in the sum otherwise a zero is
substituted.

Figure 36: Definition of Last Month Sales using a CASE statement

Figure 37 shows the object definition for the sales amount for the current month.
When contrasted to the definition for the previous month calls the difference lies
in the timeframe comparison.

Figure 37: Definition of This Month Sales using a CASE statement

When the objects are used in a query panel (Figure 38) only one SQL statement
is generated (Figure 39).

Figure 38: Query using CASE based measures

The one generated SQL statement (Figure 39) retrieves the sales for this and
last month.

Figure 39: Generated SQL for number of sales amount for current and previous month

The returned results (Figure 40) are correct.

Figure 40: Results using CASE based measures

The results were correct, only one query had to be built, no report filters as
required, and no report variables were needed. So why not use this method?

The issue with this solution has nothing to do with accuracy of results but with
performance. Every row of the fact table has to be retrieved in order to make the
date comparison. So in essence a CASE based measure is forcing a full table
scan on the fact table. When fact tables can routinely contains millions of rows
this is not an ideal resolution. To eliminate the table scan on the fact table the
rows of the fact table meeting the time criteria should be determined by query
filter based on a join to the calendar table. In most situations an index will exist
on the column used in the query filter further increasing query performance. As
the generated SQL shows (Figure 39), all the measures from each fact table are
included in one SELECT statement regardless of their denoted timeframe. Ideally
if separate Universe objects could be created that would then force a separate
SELECT statement to be generated for each timeframe then not only would
Kimball’s definition would be met but be met in an optimal performing way.

So now there are two criteria that have been identified: separate Universe
objects for each timeframe and identification of fact table rows by a filter on the
join to the calendar table. To accomplish this, the first step is to bring in the
tables for the Universe (Figure 41).

Figure 41: Tables required for Universe

An alias for each grain of measurement is created of the fact table (Figure 42).

Figure 42: Table alias creation

One alias is created to represent this month calls (Figure 43). A similar alias is
created to represent last month calls.

Figure 43: Create alias for this month

Once the alias tables have been created (Figure 44), the original fact table is no
longer part of the Universe,

Figure 44: Alias tables present

The next step is to create the table joins and automatically detect the contexts.
The result of these operations is shown in Figure 45.

Figure 45: Alias tables, table joins, and detected contexts

The join (Figure 46) to This_Month_Calls references only the Month_Id column
calendar column. The same is true for Last_Month_Calls (Figure 47). At this time
there is not any difference in the way the aliases have been used in the Universe.

Figure 46: Join between This_Month_Calls and MP_T1_Calendar

Figure 47: Join between Last_Month_Calls and MP_T1_Calendar

So why create the aliases? The difference will be seen when objects are created
for query panel use (Figure 48).

Figure 48: Objects for testing different grains of measurement

The object This Month Calls (Figure 49) references one alias while Last Month
Calls (Figure 50) references the other alias. In addition a Where clause has been
specified for each object. The Where clause enforces the relative time period
contained in the calendar table. When used in conjunction with the join specified
between the alias and calendar table only the Month_Ids for that relative period
are returned from the alias table. So for This_Month_Calls only the rows having a
Month_Id that matches those in the calendar table specified as Current Month
are returned.

Figure 49: Definition of the object: This Month Calls

Figure 50: Definition of the object: Last Month Calls

So why not include the object’s Where clause as part of the join to the calendar
table? That would be easier than having to specify a Where clause on individual
objects It indeed would be easier but then that join would only included in the

generated SQL if objects from both the calendar and the alias tables were
included as part of the query.

Building the query to return both the number of calls for this month and last
month is now an easier process. A single query without any prompts or query
filters can produce the necessary SQL to return the proper results (Figure 51).

Figure 51: Query panel result objects for this and last month calls

The contexts detected upon use of the alias tables result in the creation of
multiple SQL statements (Figure 52 and Figure 53).

Figure 52: Generated SQL for This Month Calls

Figure 53: Generated SQL for Last Month Calls

After the SELECT statements are executed, the two result sets are combined by
the Business Objects server for use in a report (Figure 54). Keep in mind that a
JOIN_BY_SQL parameter setting of Yes can push more of the processing to the
database.

Figure 54: Resulting report for the number of this and last month calls

By also having the calendar table (MP_T1_Calendar) as part of the contexts, the
calendar objects can also be used in the query. If the Year Month object can also
used in the query (Figure 55), the number of calls by month allow for a quick
verification of the results.

Figure 55: The Year Month object added to the query

The new results when formatted as a cross tab (Figure 56) show that all the calls
for last month occurred in 2004/05 while all the call for this month were in
2004/06. With the sample data provided this is what was expected.

Figure 56: This and last month calls by month

What if the sales for this month and last months are also needed? The same
process is repeated. The sales table is added to the Universe from which two
aliases are created, one for this month and another for last month. The new

aliases are then joined to the dimension tables after which the detect contexts
operation is executed again. Once the contexts are added, measure objects are
then added to represent this month sales and last month sales. As the number of
facts grow and the number of the various time dimensions increase, the measure
objects should be arranged in separate folders to allow easier navigation. All of
this can be viewed in Figure 57.

Figure 57: Universe with additional fact table aliases, contexts, and measure objects.

Now to produce a report to show both the sales amounts and the number of calls
for this month and last month, only one query still needed as depicted in Figure
58.

Figure 58: Query panel for this and last month sales and calls

Without the additional Universe design, it is very possible that four queries would
have to be built manually. Instead the alias tables and context create the four
queries for us (Figure 59).

Figure 59: Four queries generated

The result sets are again combined by the Business Objects server for
presentation in a report (Figure 60).

Figure 60: Report showing this and last figures for sales and calls.

Many other objects could be created to represent many other time timeframes by
creating objects from various alias tables and adjusting their Where clause.

Object Alias Where Clause
Current Qtr Sales This_Qtr_Sales MP_T1_Calendar.Qtr_Rpt_Desc =

'Current Qtr'

Same Qtr Last Year Sales Same_Qtr_LY_Sales MP_T1_Calendar.Qtr_Rpt_Desc =
'Current Qtr - 3'

Current Year Sales This_Yr_Sales MP_T1_Calendar.Year_Rpt_Desc =
'Current Year'

Last Year Sales Last_Yr_Sales MP_T1_Calendar.Year_Rpt_Desc =
'Current Year - 1'

Rolling 3 Month Sales Roll3_Month_Sales MP_T1_Calendar.Month_Rpt_Desc =
'Current Month' OR
MP_T1_Calendar.Month_Rpt_Desc =
'Current Month - 1' OR
MP_T1_Calendar.Month_Rpt_Desc =
'Current Month - 2'

Why bother with alias tables? Why not just create the objects with their unique
Where clauses from the original table? The alias tables are created to require the
need for contexts. The presence of context forces the query engine to generate
separate SQL statements for each time grain. Without the separate SQL
statements the Where clauses are combined with the AND operator. With the
alias tables separate SQL statements are created for each time grain separating
the Where clauses. Without the context, the query from Figure 64 to return the
Category, This Month Calls, and Last Month Calls would not return any data. To
prove this let’s create a simple test Universe without any alias tables (Figure 61).

Figure 61: Simple test Universe without any alias tables or contexts.

The objects for This Month Calls (Figure 62) and Last Month Calls (Figure 63)
are now created from the MP_T1_Calls table instead of an alias.

Figure 62: This Month Calls without an alias table

Figure 63: Last Month Calls without an alias table

Now a query is completed to return the Category, This Month Calls, and Last
Month Calls (Figure 64). Viewing the SQL one can see that the Where clauses
have been ANDed together.

Figure 64: SQL with combined WHERE clauses

As there is not any Month_Id with a Month_Rpt_Desc that is both ‘Current Month’
and ‘Current Month – 1’ no data should be returned. Upon execution that is the
message returned (Figure 65).

Figure 65: No data available

To accomplish the second multi-pass scenario of mixing the grains of
measurement in the same query liberal use of alias tables and contexts are often
the answer. These techniques will force the creation of multiple SQL statements
whose result sets are combined together. In summary, the steps are:

1. Create an alias of the fact table for each required measurement grain
2. Join the alias tables to all appropriate dimension tables
3. Detect and create the contexts
4. Create the Universe measure objects from the aliased fact tables
5. Place the required Where clauses on the measure objects that indicate

the appropriate measurement grain

Scenario 3: Advanced Calculations

Two of the five multi-pass scenarios have now been covered. Next up on the list
is the ability to define calculations that require an end result as one of its factors.
Often these are calculations that one would normally accomplish at the report
level. With recent additions to the Web Intelligence variable editor, it is close to
being on par with Desktop Intelligence. So why would one want to deviate from
this strategy? There are several reasons that come quickly to mind.

1. The first reason is forcing the user to duplicate the same variable
calculation from report to another. The possibly for a simple type is ever
present. If the formula were to change many reports have to be touched in
order for all reports to have the same results.

2. The next reason is that it gives the impression of being hard to use,
especially during a demonstration. After visiting the query panel to build
the query and watching the results be displayed there is another step, a
visit to the variable editor. It presents a better solution to be able to pull out
calculations from the Universe while in the query panel.

3. The “One version of the truth” mantra falls apart when a prospect or end
user has to repeatedly create the same variable from one report to
another. Not having the ability to share report variables across different
reports conflicts with one of our selling points. If these calculations can be
available in the Universe then “One version of the truth” is once again
valid.

4. Some competitors have the ability to create these types of variables within
their semantic layer. Not showing such capability puts us at a
disadvantage.

So are report variables worthless? The best way to position the variable editor
may be is that it gives the end user the ability to create variables that are not yet
present in the semantic layer. It ties in nicely with the “Not being held hostage by
IT” message. If the owners of the semantic layer have not yet created a variable
that is needed for reporting, the report creation is not held up waiting on a new
version of the semantic layer. The report can still be created and published while
the request for a new semantic layer variable works its way through the system.
Some of our competitors do not have a calculation engine within their tool set,
depending on the database for all calculations. If the database can not produce
the calculation, then there is not another option. This also applies in situations
when it may not be possible to create the calculations within the database. In
addition report variables work extremely well with reports with the drilling option
activated. Report variables can be created to maintain their context while objects
are added to or removed from the report. The next release of Business Objects,
XI 3.0, will offer some additional capabilities in this regard but currently report
variables are the best option.

In this example the ration of a category’s sales to total sales is needed for a
report. The initial query contains only two objects (Figure 66).

Figure 66: Result objects for ratio example

The results are returned as two columns (Figure 67). A third column showing the
ratio to total sales is needed.

Figure 67: Initial results

To add the ratio for each category’s sales to the overall total sales is much easier
than other possible calculations as it is one of the predefined calculations. Simply
highlight the Sales column, click on the Percentage option (Figure 68).

Figure 68: Add the percentage to total sales calculation

Now each category’s contribution to total sales as a percentage is displayed on
the report (Figure 69). In this case the variable editor did not even have to
accessed, allowing a simple workflow to be presented.

Figure 69: Report with each category’s contribution to total sales

How would such a calculation be achieved using traditional multi-pass SQL? At a
minimum four (4) steps are required.

1. Create a temporary table containing a single column for the grand total of
sales.

CREATE TABLE Total_Sales

 (All_Sales decimal(10,2))

2. Insert into this temporary table the grand total of all sales.
INSERT INTO Total_Sales (All_Sales)

 SELECT sum(MP_T1_Sales.Sales)

 FROM MP_T1_Sales

3. Select the total sales, the category dimension table for the category name,

and also the ratio which is sum by category divided by the sum from the
temporary table.

SELECT Category, sum(MP_T1_Sales.Sales),

 (cast(sum(MP_T1_Sales.Sales) as

decimal(10,4))/(All_Sales)) * 100 as Pct_of_Sales

 FROM MP_T1_Sales, Total_Sales, MP_T1_Cat

 WHERE MP_T1_Cat.Cat_Id = MP_T1_Sales.Cat_Id

 GROUP BY Category, All_Sales

 ORDER BY Category

4. Drop the temporary table.

DROP TABLE Total_Sales

A Cartesian product will occur in step 3 when the result from the temporary table
is used as no join exists between the temporary and the sales fact table. The
report results are still correct since there is only one row within the temporary
table.

A derived table is required to deliver the sales ratio as a Universe object. The
derived table is created in the Universe. The SQL is shown in Figure 70. In this
case the category id, sum of sales for the category id, total sales, and the ratio of
the category sales to the total sales. The derived within the Universe contains a
derived table itself. The SELECT sum(MP_T1_Sales.Sales) as All_Sales FROM
MP_T1_Sales)as Company portion of the derived table, contained in the primary
FROM clause, corresponds to step 2 of the multi-pass scenario. The
(sum(MP_T1_Sales.Sales) / Company.All_Sales) as Sales_Ratio of the first
SELECT clause corresponds to step 3 of the multi-pass scenario.

Figure 70: Derived table syntax for sales ratio

The next step is to join the derived table to the dimension table. Once this is
done be sure that it is also included in a context. Both of these can be seen in
Figure 71.

Figure 71: Derived table, Category_Sales_Ratio, with context and join identified

Objects can be created from the derived table. In this case the Category Sales
Ratio object (Figure 72) is created so that the ratio can be used in a query panel.

Figure 72: Definition of the Category Sales Ratio object

An aggregate function, in this example the min function, is added so that the
object will not be added to the GROUP BY clause. The syntax of a SELECT
statement requires that all objects that are not part of an aggregate function must
be part of the GROUP BY clause. If the aggregate function is omitted, Category
Sales Ratio will need to be part of the GROUP BY clause since no aggregate
function is present. When Business Objects combines SQL statements, if the
GROUP BY clauses of the SQL statements are identical then a Join operation is
performed to combine the result sets. If the GROUP BY clauses of the SQL
statements differ then a Synchronization operation is performed to combine the
result sets. Only if a Join operation is possible will the JOIN_BY_SQL parameter
of Yes be respected. If the result set combination action is Synchronization the
JOIN_BY_SQL parameter is ignored regardless of its setting. When this occurs
the generated SQL can not be used by Crystal Reports nor Query as a Web
Service. The min function used in this example has no bearing on the results
returned by a query using this object as there is only one value per category
(Figure 73). As only one row is returned per category the following aggregate
functions could be used: avg, max, min, and sum.

Figure 73: Values returned by the derived table, Category_Sales_Ratio

Within the query panel, the object is used as any other (Figure 74).

Figure 74: Sales Ratio used within query panel

The resulting SQL of the query is the joining of two SQL statements. One
references the derived table. That SQL is generated as:

SELECT

 MP_T1_Cat.Category,

 min(Category_Sales_Ratio.Cat_Sales_Ratio)

FROM MP_T1_Cat,

 (SELECT MP_T1_Sales.Cat_Id,

 (sum(MP_T1_Sales.Sales)/Company.All_Sales) as Cat_Sales_Ratio

FROM MP_T1_Sales,

 (SELECT sum(MP_T1_Sales.Sales) as All_Sales FROM MP_T1_Sales) as

Company

GROUP BY MP_T1_Sales.Cat_Id, Company.All_Sales) Category_Sales_Ratio

WHERE (Category_Sales_Ratio.Cat_Id=MP_T1_Cat.Cat_Id)

GROUP BY MP_T1_Cat.Category

The first pass is shown in blue and the result set of this SELECT statement
becomes known as Company. The purpose of Company is to calculate the total
overall sales that is then labeled All_Sales. The second pass is highlighted in
green. The result set of this SELECT becomes known as Cat_Sales_Ratio. It
uses All_Sales from the first pass to calculate the sales ratio by category.

Once the results are returned no calculations are needed at the report level
(Figure 75). Imagine if the report requirement was to only show the category and
the sales ratio. Without the Category Sales Ratio object the report creator or ad
hoc user would have to know to return the Sales object and then do a report
calculation. Having the Category Sales Ratio object eliminates some of the guess
work.

Figure 75: Query results containing Sales Ratio by Category

The measure Category Sales Ratio only has meaning when used with the
Category (or Category Id) dimension object. Seeing the values of Category Sales
Ratio without the category values is meaningless. Nonetheless nothing prevents
the ad hoc user or report builder from only using Category Sales Ratio in the
query panel. In addition, nothing prevents the report consumer from removing the
Category column from the report during analysis. However, there is a setting
within the Universe that can aid in preventing misinterpretation of results. The
Properties tab of measure objects (Figure 76) contains the setting for (Choose)
how this measure will be projected when aggregated. The values offered are:
Average, Count, Max, Min, None, and Sum. This setting determines the action
taken by report level aggregation engine after results have been returned by the
database. This setting does not affect SQL generation or database aggregation.
By default, the same function is employed as in the object’s definition. In this
case, since the object definition is

min(Category_Sales_Ratio.Cat_Sales_Ratio), the default setting for
the projection aggregate will be Min. In order to maintain some semblance of
reasonable results, the projection aggregate should be set to either None or
Sum. The other settings can lead to very peculiar results if the ratio is viewed out
of context. Even though None and Sum lead to very dissimilar results when the
ratio is viewed without the category information, a case can be made for either
setting.

Figure 76: Properties tab for the Category Sales Ratio Object

In order to see the effects of the projection aggregate a new table is added to the
schema. A Region table is added along with a region indicator to the sales table
as noted in Figure 66. Since the region indicator exists only in the sales table, the
region table is only part of the sales (MP_T1_Sales) context.

Figure 77: Universe with region table added

In all the projection examples which will follow, the query panel remains
unchanged. The query is constructed as seen in Figure 78.

Figure 78: Query panel for aggregate projection examples

The initial results are shown in two blocks (Figure 79) as the sales region is not
part of both contexts. The initial query results are not affected by the aggregate
projection setting.

Figure 79: Initial query results for aggregate projection examples

The Category Sales Ratio can be placed in the block containing the region. Since
the category is also in the block the results remain correct (Figure 80) regardless
of the projection aggregate.

Figure 80: Query results for aggregate projection examples

When the column category is removed the projection aggregate is used to
recalculate or redistribute the Category Sales Ratio. The results when the
projection aggregate is set to Average are shown in Figure 81. The figure of
14.29% is arrived at by summing all the ratios and dividing by seven (7). The
sum of the ratios is 100% and there are 7 categories which yields an average of
14.29 (100 / 7 = 14.29).

Figure 81: Projection aggregate set to Average

The results when the projection aggregate is set to Count are shown in Figure
82. The figure of 700% is arrived at by counting the number of categories. There
are seven (7) categories which yields a count of 7. Since the column is being
formatted as a percent, 700% is displayed in the report.

Figure 82: Projection aggregate set to Count

The results when the projection aggregate is set to Maximum are shown in
Figure 83. The Category Sales Ratio becomes 43.84% as this is the largest ratio
of all categories. This is verified in Figure 69 for the “Household” category.

Figure 83: Projection aggregate set to Maximum

The results when the projection aggregate is set to Minimum are shown in Figure
84. The Category Sales Ratio becomes 2.72% as this is the smallest ratio of all
categories. This is verified in Figure 69 for the category of “Kid’s Korner”.

Figure 84: Projection aggregate set to Minimum

The results when the projection aggregate is set to Sum are shown in Figure 85.
The Category Sales Ratio becomes 100% as this is the sum of the ratios over all
the categories. Without the Category column displayed, it can be argued that the
Category Sales Ratio should be 100%. So the projection aggregate of Sum is a
valid setting.

Figure 85: Projection aggregate set to Sum

The results when the projection aggregate is set to None are shown in Figure 86.
The Category Sales Ratio is not recalculated or redistributed. Separate values for
each category are maintained. In some aspects a setting of None causes the
Category Sales Ratio to be treated as dimension once the category is removed.
The original ratio values are preserved as entities and as such prevent Sales
from being aggregated to the region level. So the projection aggregate of None
can also be considered a proper setting.

Figure 86: Projection aggregate set to None

For measures (calculations) that are dependent upon a dimension, the projection
aggregate should be set to either Sum or None. An argument can be made for
either setting. The best setting for reporting environment should be determined in
discussion with all parties involved. Once determined the same projection setting
should be used in these situations. Consistency is important when explaining the
end results to the report consumers.

How does this compare to use of a report variable? If region is added to the
query of Figure 66 and the sales ratio is obtained from the calculation wizard
(Figure 68) the results are shown in Figure 87. The ratio is not at the category
level but at the region and category level.

Figure 87: Sales ratio from calculation wizard by Region by Category

Once Category is removed from the block, the sales ratio automatically
recalculates to the Region level (Figure 88). This recalculation is done by the
report engine not by the database. The report engine detects the context of the
calculation by the dimensions used and recalculates accordingly.

Figure 88: Sales ratio from calculation wizard by Region

A quick comparison between report variables and Universe objects shows the
advantages of each solution.

 Report

Variable
Universe

Object
Use in query panel which facilitates ease of use X
Consistent definition, one version of truth X
Recalculates according to dimensions used in block X

Does not require Universe changes for new calculations X
One place for maintenance if formula changes X

Now one may ask how to obtain the SQL for the derived table. The best answer
is to use a SQL generation tool like Business Objects. Desktop Intelligence lends
itself to this task very well as changes to the Universe do not have to continually
be exported to the repository to be available for use by Desktop Intelligence.
Starting with a simple Universe (Figure 89) the derived table used in the previous
example can be built. Since MP_T1_Sales has all the information required for the
first SQL pass that is the only table included within the Universe.

Figure 89: Starting Universe to build derived table

This Universe is then used within Desktop Intelligence to build the derived table.
The first SQL pass or derived table needs to only return the overall sales. So that
is the query that will be built.

Figure 90: Results objects required for first SQL pass

The SQL window, Figure 91, is then opened to copy the generated SQL and
ensure that it resembles what was expected.

Figure 91: Generated SQL for first SQL pass

The SQL is then copied to the clipboard so that it can later be pasted into a new
derived table within Universe Designer. The query can also be executed so that
the results (Figure 92) can be viewed and verified. This is the same results that a
derived table would return.

Figure 92: Results from first SQL pass

Figure 93: Derived table for first SQL pass

Once pasted into a derived table (Figure 93), the only difference is that each
calculated column must have a name. In this case the sum of sales is to be
called All_Sales. Now it’s time to create the second SQL pass. The second pass
needs to return All_Sales and each category’s sales ratio to the overall sales
total (All_Sales), so a few new objects need to be created. The first object is for
All Sales, Figure 94. No aggregation is needed so it is left as a dimension.

Figure 94: Object definition for All Sales

The second object is for the category’s sales ratio to the overall total and will be
known as Sales Ratio. Defined in Figure 95, two existing objects are used for the
calculation.

Figure 95: Object definition for Sales Ratio

Now that the objects have been created the Universe has a new look as depicted
in Figure 96. There is not a join from the derived table Company to the
MP_T1_Sales table. If a join had been needed it would have been created as
any other join between tables located within the database schema.

Figure 96: Universe after inclusion of first derived table

Now it is time to use Desktop Intelligence to create the SQL for the final derived
table. For the second derived table the category id, total sales for that category,
the overall sales total, and the category’s sales ratio to the overall total is
needed. So those objects are the ones used in the query (Figure 97).

Figure 97: Result objects for the second SQL pass

Again the SQL window, Figure 98, is opened to copy the generated SQL and
ensure that it resembles what was expected. However when this attempted a
Cartesian product warning is received (Figure 99). This is due to the Company
derived table not being joined to any other table. In this case it is no cause for
alarm.

Figure 98: Generated SQL for the second SQL pass

Figure 99: Cartesian product warning

As with the first pass, the SQL is copied to the clipboard so that it can later be
pasted into a new derived table within Universe Designer. The query can also be
executed so that the results (Figure 100) can be viewed and verified. This is the
same results that a derived table would return.

Figure 100: Results from second SQL pass

As with any derived table each calculated column must be named. The
category’s sales ratio to the overall total will be named Cat_Sales_Ratio.

SELECT

 MP_T1_Sales.Cat_Id,

 Company.All_Sales,

 (sum(MP_T1_Sales.Sales))/(Company.All_Sales) as Cat_Sales_Ratio

FROM

 MP_T1_Sales,

 (SELECT

 sum(MP_T1_Sales.Sales) as All_Sales

FROM

 MP_T1_Sales

) Company

GROUP BY

 MP_T1_Sales.Cat_Id,

 Company.All_Sales

The derived table (Figure 101), that has just been created with Desktop
Intelligence bears a very strong resemblance to the one (Figure 98) used in the
previous example. There is not any material difference between the two, only a
few formatting and name changes.

Figure 101: Derived table for second SQL pass

Using Desktop Intelligence or other SQL generation tool can be extremely useful
when creating derived tables. Granted this has been a simple example, but
derived tables can become quite intricate as desired calculations become more
complex.

Scenario 4: Semi-additive Measures

The next scenario concerns semi-additive measures. This is most difficult of the
scenarios to address. Additive measures can be summed up across all
dimensions and rolled up within a dimensional hierarchy. Semi-additive
measures can be summed up across some dimensions but not all. Usually the
time dimension is the exception. Other aggregate functions such as average,
minimum, and maximum can be applied on semi-additive measures for all
dimensions but not sum. Two good examples of semi-additive measures are
ending inventory and account balances. Account balances are usually kept on a
daily basis. So user may want to see the month-ending account balances for a
specific month. The balances can be summed over branch location or account
type but not over time. The balances should not be summed over days for
example since the user has fixed the time dimension by requesting balances as
of month end. The month ending balance is not the sum of the daily balances for
the month (as much as we would all like it to be). The month ending balance is
the daily balance at a fixed point in time. So the balance can be summed over
some dimensions but not all. Two common categories of semi-additive measures
are periodic and level. Account balances fall into the periodic category while
inventory and headcount are examples that fall into the level category.

The method to solve this situation involves a few components which are derived
tables, aggregate awareness, and the Query Drill option available only within
Web Intelligence. Derived tables are created for each time period that is needed.
If the user needs to view balances as of month end, quarter end, and year end
then a derived table is created for each. The derived table extracts the balance
for each account as of the specified time period. For example a derived table for
month end will extract the account balance as of the last day of the month for
each account. In some aspects this type of derived table can be viewed as an
aggregate table. With this concept in mind the next step is to setup aggregate
awareness. Continuing with the example, the day time dimension is would not be
compatible with the month-end derived table while the day and month time
dimensions would not be compatible with the quarter-end derived table. In this
way if the user requests account balance along with month in the query then the
month-end balances are returned. If the user than adds day to the query the daily
balance would be returned. Query drill is a relatively new option within Web
Intelligence that re-queries the database with each drill operation and appends
the drill filter to the query. In this regard, if a report displays month along with the
month-end balance, a drill on month to day will then re-query the database
causing the daily balance to be displayed along with day.

A different set of data is required to show this example. The spreadsheet below
(Figure 102) shows the balances of four (4) accounts loaded to the database.
Three tables are created within the database to hold the data.

Figure 102: Account balance data

The table MP_T2_Account (Figure 103) contains balances for accounts for
various days of the year. Each account exists only one time for each date. It
represents the ending balance for that account on that day.

Figure 103: MP_T2_Account sample data

The table MP_T2_Account_Info table (Figure 104) contains base information for
each account. Only one row exists for each account.

Figure 104: MP_T2_Acct_Info data

The MP_T2_Calendar contains the calendar information for each date. Some of
the relevant columns are shown in Figure 105.

Figure 105: MP_T2_Calendar sample data. Not all columns shown.

The initial Universe, Figure 106, is created to aide in the creation of derived
tables.

Figure 106: Initial Universe

A few measure objects are created. The definition of Max Date ID is shown in
Figure 107.

Figure 107: Definition of Max Date ID

The definition of Max Date is shown in Figure 108 the Max Date is used for
descriptive purposes within the derived table.

Figure 108: Definition of Max Date

A derived table is needed to hold the month ending balance for each account.
The first step is to create a list of ending date for each month. Using the Universe
from Figure 106 within Desktop Intelligence, a query (Figure 109) is created that
returns the maximum date for each month.

Figure 109: Result objects for month ending dates

The SQL generated for this query is shown in Figure 110.

Figure 110: SQL generated for month ending dates

A portion of the results is shown in Figure 111

Figure 111: Sample of the month ending dates

The SQL from Figure 86 is then used to create a derived table (Figure 112).

Figure 112: Creation of the month ending dates derived table

The new derived table, Month End, is integrated into the Universe as shown in
Figure 113.

Figure 113: Create the joins and objects for the month ending dates table in the Universe

A query (Figure 114) is then created to retrieve the balance for each account on
the month ending date.

Figure 114: Results objects for month ending balances

A sample of the results is shown in Figure 115. However there is a problem.
Account Id 104 does not have an ending balance for February. The reason is that
the last date that exists for 104 was on February 27, not February 28 the date
that exists in the Month_End table.

Figure 115: Month ending balances by account

What is needed is the maximum date per month for each account. The query
from Figure 109 is replaced with the query from Figure 116.

Figure 116: Query for month ending dates by account

The results are shown in Figure 117. Account ID of 104 now has entry for
February.

Figure 117: Sample results of month ending dates by account

The SQL generated by the query in Figure 116 is then used to create a derived
table, Acct_Month_End as shown in Figure 118.

Figure 118: Derived table SQL for Acct_Month_End

There is one remaining issue with the derived table. In Figure 117 even though
account id 104 now appears with a February date, it is not as of the month
ending date of February. The next step is to correct this. The derived table
created in Figure 118 is still used along with the Month_End derived table (Figure

112) but joined to the Universe in a different way (Figure 119). The table is now
joined to the calendar table instead of the account.

Figure 119: Both derived tables used in Universe

A new query is then built (Figure 120). The Month of Calendar object is from the
Acct_Month_End table which forces the last balance for the month to be
retrieved from MP_T2_Account. All other objects are pulled from either the
MP2_T2_Account or Month_End tables.

Figure 120: Result objects for last balance available for month with month ending date

Now the results are in line with what is desired as seen in Figure 121. All dates
appear as the actual month end, even account if of 104. The balance for account
104 is as of 2/27/2006, the last entry for that account in February 2006.

Figure 121: Results showing last balance available for month with month ending date

The generated SQL results in:

SELECT

 MP_T2_Account.Acct_ID,

 MP_T2_Account.Acct_Balance,

 Month_End.Month_End_Date,

 Acct_Month_End.Month_Of_Calendar,

 Month_End.Month_End_Date_ID

FROM

 (SELECT

 MP_T2_Calendar.Month_Of_Calendar,

 max(MP_T2_Calendar.Day_Of_Calendar) as Month_End_Date_ID,

 max(MP_T2_Calendar.Calendar_Date) as Month_End_Date

FROM

 MP_T2_Calendar

GROUP BY

 MP_T2_Calendar.Month_Of_Calendar) Month_End INNER JOIN MP_T2_Calendar

ON (MP_T2_Calendar.Month_Of_Calendar=Month_End.Month_Of_Calendar)

 INNER JOIN MP_T2_Account ON

(MP_T2_Calendar.Day_Of_Calendar=MP_T2_Account.Date_ID)

 INNER JOIN (SELECT

 MP_T2_Calendar.Month_Of_Calendar,

 MP_T2_Account.Acct_ID,

 max(MP_T2_Calendar.Calendar_Date) as Acct_Month_End_Date,

 max(MP_T2_Calendar.Day_Of_Calendar) as Acct_Month_End_Date_ID

FROM

 MP_T2_Calendar, MP_T2_Account

WHERE

 (MP_T2_Calendar.Day_Of_Calendar=MP_T2_Account.Date_ID)

GROUP BY

 MP_T2_Calendar.Month_Of_Calendar, MP_T2_Account.Acct_ID)

 Acct_Month_End ON(Acct_Month_End.Acct_ID=MP_T2_Account.Acct_ID and

 Acct_Month_End.Acct_Month_End_Date_ID=MP_T2_Account.Date_ID)

This SQL is now used to create the final derived table in the actual reporting
Universe. The intent of showing the trials and tribulations of this derived table is
to demonstrate that the creation of advanced derived tables is an iterative
process. Be sure to verify the results at each step to ensure that expected results
are being attained. Is the current derived table exactly what is needed in this
situation? Possibly not. If you look at the results (Figure 122) only months with a
balance entry are being returned. In this case there are no entries for May 2006.
Example data was created for this exercise. It could very well be that at least one
entry is made for every account every month in a real world situation. But we are
going to proceed with the derived table as it now stands.

Figure 122: No results for May for any account

Finally we return to the actual reporting Universe. The SQL generated by the
query in Figure 123 is used to create a derived table. The column containing the
account balance, Acct_ME_Balance, is renamed to better reflect its actual
content.

Figure 123: Derived table to return the month ending balance for each account

This derived table, Acct_Month_End_Bal, is now made part of the Universe as an
additional fact table.

Figure 124: Universe with additional derived table (Acct_Month_End_Bal), aliases,
contexts, and objects.

A few objects of interest have been created. The measure object, Acct Ending
Balance, is defined as aggregate aware (Figure 125). The intent is that the object
returns the ending balance on an account either as the account balance as of the
end of a month or as of the end of a day. In that case aggregate navigation
needs to be set up.

Figure 125: Definition of the Acct_Ending_Balance object

Aggregate navigation is set such that the Acct_Month_End_Bal should not be
used in conjunction with the Calendar Date object (Figure 126). If the Calendar
Date object is needed on the report, the ending account balance needs to be
returned by day which is held in the MP_T2_Account table.

Figure 126: Aggregate Navigation for monthly and daily balances

The testing will be done in Web Intelligence in order to utilize the Query Drill
feature. In the query panel, Figure 127, four objects will be returned. In case one
has not noticed, the daily balances follow a pattern that will make it easier to
verify the results. All balances contain six digits. The first digit is the account id,
either 1, 2, 3, or 4. The next five digits represent the year (one digit – 6 or 7),
month (two digits), and day (2 digits). So if the account id is represented as A,
then the pattern will be seen as AYMMDD.

Figure 127: First test of semi-additive measure

A portion of the results is shown in Figure 128. It’s interesting to note that the
ending balance for account 104044 for February 2006 is 460227 which indicates
that the balance occurred on the 27th while the ending balances in February 2006
on the other accounts indicate that they occurred on the 28th.

Figure 128: Sample results from first semi-additive query

Indeed, if the SQL (Figure 129) is viewed the ending balance was retrieved from
the derived table, Acct_Month_End_Bal.

Figure 129: Portion of generated SQL

Now it’s time to time to test the drill functionality. The first set is to enable the
Query Drill option (Figure 130). It is found on the Document Properties window.

Figure 130: Enable Query Drill on document

Next, on the document we drill into the Year-Month column on the 2006-02 value.
As desired the daily values are now returned as shown in Figure 131.

Figure 131: Drill into daily ending balances

So this must mean the account ending balance is no longer being retrieved from
the derived table, Acct_Month_End_Bal, but from the actual account balances
table, MP_T2_Account. Going back to the query panel and viewing the SQL
(Figure 132) one will see that this is indeed what has happened. Why is this? The
SQL also shows that the column MP_T2_Calendar.Calendar_Date is now being
returned from the query. This is the Calendar Date object which has been
defined as incompatible with the derived table (Figure 126). So the aggregate
aware function has been invoked on the Acct Ending Balance object.

Figure 132: Generated SQL from Query Drill action

So navigation across the non-additive dimension has been a success. Now it’s
time to try to an additive dimension in order to meet the full definition of a semi-
additive measure. In the query panel two dimensions, one additive and one non-
additive are requested.

Figure 133: Result objects for semi-additive measure

The results, Figure 134, seem to look promising. Account ids 1 and 3 have a
status of 0, account id 2 has a status of 1, and account id 4 has a status of 2.
Keeping in mind that the balances are in a format of AYMMDD the results are
correct.

Figure 134: Semi-additive measure across one additive and one non-additive dimensions

Viewing the SQL, the aggregate sum function was used against the month
ending balances table.

Figure 135: Generated SQL for Semi-additive measure across one additive and one non-
additive dimensions

 After setting the Query Drill option, we again drill into the Year-Month value of
2006-02. The results, Figure 136, are again correct.

Figure 136: Drill operation into a semi-additive measure

Viewing the SQL the same changes as before have occurred. The balances are
now returned from the table MP_T2_Account and the
MP_T2_Calendar.Calendar_Date has been appended to the query. This allows
the balances to be summed across the Account Status dimension but not the
time dimension.

Figure 137: Portion of the generated SQL after Query Drill operation

The next obvious question is how hard is it to add the next level of quarter ending
balances? The answer is, not as hard as the first level. Copy the SQL text of the
month end derived table, Acct_Month_End_Bal, into Notepad or something
similar. Next apply a Replace All operation which substitutes Quarter for Month
and you are 99% done. The last step is to rename the balance column from
Acct_ME_Balance to Acct_QE_Balance. It may not always be this simple but it is
common to be able to modify an existing derived table to create the table for the

next level. Now create the join and contexts for the quarter end derived table to
complete the Universe structure (Figure 138).

Figure 138: Universe structure with derived table for quarter ending balances

Now a new object, Year-Quarter, has to be created to display the year and
quarter. Its definition is shown in Figure 139.

Figure 139: Definition of Year-Quarter object

The Acct Ending Balance object needs to be modified to make use of the new
derived table. Its new definition is shown in Figure 140.

Figure 140: New definition of Acct Ending Balance to include quarter end

Be sure to update the time hierarchy with Year-Quarter as shown in Figure 141.

Figure 141: Add the Year-Quarter object into Time hierarchy

Aggregate Navigation should also be updated to reflect the proper use of the
Acct_Qtr_End_Bal table with the time dimensions. The balances for quarter end
should not be used whenever the Year-Month or the Calendar Date are
referenced in a query. The incompatibility has been changed to reflect this in
Figure 142.

Figure 142: Aggregate Navigation with quarter end balances

Believe it or not, it’s now ready to test. Build the query to show ending balances
for each account (Figure 143).

Figure 143: Results objects to test quarter end balances by account

A quick look at the generated SQL (Figure 144) verifies that the quarter end
derived table will be used.

Figure 144: Generated SQL for the quarter end balances

The results look correct (Figure 145). A good check is to take a look at account if
104. Since the account balances are in the format of AYMMDD the quarter end
balance for 2006-Q2 on account 104044 occurred on June 29, 2006. All other
accounts the balance occurred on the actual quarter ending date of June 30,
2006.

Figure 145: Results showing quarter ending balances

A drill operation from quarter to month should invoke the month end balances
derived table as long as Query Drill option has been enabled. The drill operation
into 2006-Q2 depicted in Figure 146 confirms that the month end balances have
now been accessed.

Figure 146: Sample results for drill on 2006-Q2

Now a drill operation into 2006-06 results in Figure 147. These results confirm
that the daily balances are being accessed.

Figure 147: Sample results for drill on 2006-06

For the second round of tests the account will not be one of the results objects
(Figure 148).

Figure 148: Result object for quarter end balances by account status

The initial results look correct. Remember that account ids of 1 and 3 have a
status of 0, account id of 2 has a status of 1, and account id of has a status of 2.

Figure 149: Results of quarter ending balances by status.

The results of a drill operation into 2006-Q2 are shown in Figure 150. These
results prove that the ending balances are now being retrieved from the month
end derived tables instead of the quarter end table.

Figure 150: Month ending balances by status after a drill into 2006-Q2

And the last step of a drilling into 2006-06 is shown in Figure 151. Now the
balances are being retrieved from the daily balance table instead of the month
end derived table.

Figure 151: Daily balance by status after drill operation into 2006-06

At this point the Universe has a semi-additive measure, Acct Ending Balance,
that is not additive over the time dimension but is over all other dimensions. To
create a year ending balance level requires the same techniques that have been
discussed already.

Creating semi-additive measures is the most difficult multi-pass scenario to
satisfy. Because Desktop Intelligence does not support the Query Drill feature,
use of semi-additive measures should only be used for drilling within Web
Intelligence. Any report level aggregation should be avoided when a semi-
additive measure is present. The report aggregation engine has no concept of
semi-additive measures. The objects depicted in Figure 152 can be used to
highlight the issue with report aggregation.

Figure 152: Result objects to highlight report aggregation issue

Because the lowest time level object requested is Year-Month the account
ending balances are returned from the month ending balance table. Therefore
the initial results shown in Figure 153 are correct.

Figure 153: Sample results of report aggregation issue after initial query

The problem occurs when the Year-Month column is removed from the report.
The Year-Month is still part of the query but is not being displayed in the report.
When the Year_Month object is removed from the report, the report aggregation
takes over which causes incorrect results (Figure 154). The query has not been
re-executed. Therefore the Acct Ending Balance is still based upon values in the
month end balance table.

Figure 154: Incorrect results dues to report aggregation

An additional issue of which one must be aware is that using derived tables such
as these may cause full table scans. Full table scans by themselves are not an
issue. But if such occurs against a large table performance can degrade sharply.
Demonstrating this concept with the data sets encountered within the corporate
demos or within a custom POC with customer provided data, in most cases, will
not be a problem. However in an onsite POC or production implementation work
closely with the DBA to scale down the impact of any full table scans on large
tables. Two possible solutions in these situations are:

1. Embed prompts within the derived tables to reduce the number of rows
being scanned in the detail table. Any filtering to reduce the number of
rows required to be scanned will improve performance.

2. Have the DBA create an aggregate table or view to replicate the derived
table. In the semi-additive example one could very well expect a month-
end aggregate table to already be in place.

Scenario 5: Analyzing Data Subsets

The last multi-pass scenario is extracting a subset of data for further analysis in
the same query. It is not uncommon for database schemas to contain status
update records; as the status of an account changes, a new status record is
inserted. A similar illustration is accounting systems in which transactions are
posted against accounts. In both it may be necessary to extract a subset of data
prior to doing analysis. For status records, only accounts that have reached a
specific status contained in the last update record may be required for analysis.
Similarly for transactions, only the most recent transactions for each account may
be needed for further examination.

For this scenario a change in database tables is needed. The example is
transaction based in which the most recent transaction for each account is to be
analyzed. The following tables are part of the example schema (Figure 155):

accts Base record for all accounts, regardless of type
CAL System calendar table
CHANNEL_DESCR Source of the transaction, description of channel group
CHANNEL_XREF Combines channel numbers into channel groups
checking_acct Contains based information for all checking accounts
checking_tran Transactions processed against checking accounts
customer_name Customer information

Figure 155: Initial universe for checking account transactional history

The goal is to provide the most recent transaction for each account for further
analysis. The analysis may consist of the transaction source as to discovering if a
trend exists in customers beginning to utilize a new transaction method over the
historical trend. Or the end need may be to look at recent customer transaction
experience in terms of transaction duration. In either case the first step if to
isolate the last transaction for each account. Once this is accomplished then the
rest of the analysis can continue.

The traditional approach is to actually extract the transactions that the criteria, in
this case the most recent for each account, and then proceed with the analysis.
So as usual, the first step is to create a work table.

CREATE TABLE LAST_TRANS_BY_ACCT

 (Acct_Nbr char(16), Tran_Date date)

Next the most recent transaction date for each account is extracted into the table.

INSERT INTO LAST_TRANS_BY_ACCT (Acct_Nbr, Tran_Date)

 SELECT Acct_Nbr, max(Tran_Date) from checking_tran

 GROUP BY Acct_Nbr

A second temporary table is needed to hold both the historical and recent
transactions counts by channel.

CREATE TABLE TRANS_COUNTS

 (CHANNEL CHAR(1), HIST_CNT INTEGER, RECENT_CNT INTEGER)

Now the transaction counts for each timeframe need to be loaded into the
temporary table before any analysis can be done. Recent customer behavior is
obtained and inserted into the temporary table by using the last transaction date
by account.

INSERT INTO TRANS_COUNTS (CHANNEL, HIST_CNT, RECENT_CNT)

 SELECT a.CHANNEL, 0, COUNT(a.TRAN_ID)

 FROM checking_tran a, LAST_TRANS_BY_ACCT t

 WHERE a.acct_nbr = t.Acct_Nbr

 AND a.tran_date = t.Tran_Date

 GROUP BY a.channel

The information in Figure 156 is inserted into TRANS_COUNTS.

Figure 156: Transaction count by channel for only the most recent transaction(s) of each
account

So that a comparison against historical customer behavior can be done, the
counts
are also added to the temporary table..

INSERT INTO TRANS_COUNTS (CHANNEL, HIST_CNT, RECENT_CNT)

 SELECT a.CHANNEL, COUNT(a.TRAN_ID), 0

 FROM checking_tran a

 GROUP BY a.channel

The historical counts in Figure 157 are inserted into TRANS_COUNTS.

Figure 157: Transaction count by channel for all transactions

To compare historical counts against the most recent activity by account, the
combined results are extracted from the temporary table. These results are
shown in Figure 157.

SELECT c.channel_descr, sum(t.HIST_CNT), sum(t.RECENT_CNT)

FROM channel_descr c, TRANS_COUNTS t

WHERE c.channel_nbr = t.channel

GROUP BY c.channel_descr

ORDER BY c.channel_descr

Figure 158: Comparison results from temporary table showing historical and recent
counts

Comparing recent customer behavior to historical behavior by using Figure 158,
the initial belief is that there has been an increase in the use of ACH transactions
(direct deposit, etc.) from 8.83% to 12.2% of the transactions. Further analysis
would reveal that the increase resulted from a corresponding decrease in the use
of paper transactions, 38.44% to 33.04%. Even without calculating the
percentages the traditionalist approach has created two temporary work tables,
three passes to insert data into these tables, and a final pass to display the
results. Business Objects can simplify this process in number of ways, building
upon each other by utilizing techniques already discussed.

The first step is to construct a derived table that identifies the most recent
transaction for each account. The derived table will return the last date for which
transactions occurred for each account (Figure 159).

Figure 159: Derived table which returns last transaction date for each account

The derived table is then joined to the transaction history table based upon date
and account number. The join is shown below and the altered universe is shown
in Figure 160.

checking_tran.Acct_Nbr=LAST_TRANS.Acct_Nbr AND

checking_tran.Tran_Date=LAST_TRANS.last_date

Figure 160: Derived table, LAST_TRANS, added to universe

Next a filter is constructed that takes advantage of the derived table (Figure 161).
The Where clause for the filter is the same as the same join syntax.

Figure 161: Filter to invoke the derived table LAST_TRANS. Used to return only the most
recent transaction(s) for each account.

Now it’s time to verify that the new filter does what is intended. First, a query is
built to return all transactions by account (Figure 162).

Figure 162: Query to return transactions by account

The generated SQL in Figure 163 is rather simple.

Figure 163: Generated SQL to return transactions by account

Many rows are returned for each account as no limitation was placed on the
query as seen in Figure 164.

Figure 164: Query results for transactions by account

The existing query is now modified to use the new filter.

Figure 165: Query to return most recent transactions by account

Now the generated SQL is a bit more complex (Figure 166). By joining the
transaction table to the derived table, the transactions will now be filtered by what
is retrieved by the derived table.

Figure 166: Generated SQL to return most recent transactions by account

The results are indeed filtered, with only the most recent transactions for each
account being shown. Notice that in Figure 167 transactions are displayed for
different accounts and they occurred on different days.

Figure 167: Query results for most recent transactions by account

The first step is to build a query to return the number of transactions for each
channel as shown in Figure 168.

Figure 168: Query to return transaction count by channel

The generated SQL is as expected (Figure 169).

Figure 169: Generated SQL to return transaction count by channel

The results returned by the query, Figure 170, are the same as those returned by
the manual SQL, Figure 157.

Figure 170: Results of transaction count by channel

Returning to the query panel the first step is to duplicate the existing query. Once
this is done the newly duplicated query is modified to include the recent
transaction filter, Figure 171.

Figure 171: New query to return the count of the most recent transactions for each
account by channel

The generated SQL, Figure 172, includes the join to the derived table which will
result in only the most recent transactions being including in the count.

Figure 172: Generated SQL to return the count of the most recent transactions for each
account by channel

The results are added as a new block to the existing report. The results for the
count of the most recent transactions for each account by channel, Figure 173,
do correspond to the same totals obtained from manually entering the SQL,
Figure 156.

Figure 173: Query results for the count of the most recent transactions for each account
by channel

To identify each block a row is inserted above each block and an appropriate
title. Then using the calculation wizard available in the Web Intelligence tool bar,
a percentage is added to each column (Figure 174).

Figure 174: Web Intelligence calculation wizard

Using the final results in Figure 175 it is easy to see that paper transactions have
dropped due to an increase in automated transactions (ACH).

Figure 175: Final results comparing transactions by channel

To obtain these results two very similar queries were created. Then calculations
were created at the report level to obtain percentage of total transactions. Further
formatting was required to bring the blocks together to present the consolidated
view shown in Figure 176.

Figure 176: Final formatted results to compare transaction count

The next question is, is there anything to be done to reduce the work required by
the report developer? The problems of multiple queries, additional formatting,
and usage of report variables seem very familiar. Using techniques outlined
previously a more refined solution is possible.

The first step is to alias the transaction table as last_checking_tran and then
include it as part of the universe. The LAST_TRANS derived table used to filter
for the most recent transactions by account is only joined to the new alias. This is
the only difference to the technique covered in the varying grains of
measurement section of this paper. In that section the same dimension tables
were joined to all alias tables. In this situation LAST_TRANS is being used as a
filtering table and not a dimension table. All other dimension tables, such as CAL
and channel_descr, are joined to the new alias. Once this is done the contexts
are regenerated using the wizard within Designer. Once these steps are
completed the universe resembles Figure 177

Figure 177: Universe with alias of transaction table added

An object is created for transaction count based upon the most recent
transactions by account (Figure 178). This new measure object sources the new
alias table and contains a Where clause to enforce the filter for most recent
transactions.

Figure 178: New measure object to count only the recent transactions by account

Once these changes are in place the query creation is a lot easier. A single query
is created without any filters (Figure 179).

Figure 179: Query panel using universe having transaction alias

Due to each measure coming from a different context, multiple SELECT
statements are generated. The first SELECT, Figure 180, returns the total
transaction count by channel. The second SELECT returns the same transaction
count but based only on the most recent transaction(s) for each account (Figure
181). As before, if JOIN_BY_SQL is set to Yes then only one SELECT is
generated. Each of the previously separate SELECTs will become a derived
table within a single SELECT statement.

Figure 180: Generated SQL to return transaction count by channel

Figure 181: Generated SQL to return the count of the most recent transactions for each
account by channel

As only one query was created within the query panel, only one report block is
created by Web Intelligence, Figure 182
.

Figure 182: Initial results returned from single query

The after selecting each measure column, the calculation wizard on the tool bar
can be used to add the appropriate percentages. The final result is shown in
Figure 183.

Figure 183: Final formatted results returned from single query

The next step would be to add the percentages to the universe. As this
procedure has been illustrated in earlier sections of this paper there is not a need
to repeat it here. The methodology has begun to repeat itself.

When situations arise that require analysis on a subset of data using a derived
table as a filtering mechanism may be a solution. To simplify the solution the
same techniques used in varying grains of measurement and using end results
as part of calculation can be employed.

Xcelsius and Multi-pass SQL
Up to this point the multi-pass SQL discussion has been focused on Universe
use within Web Intelligence and to a lesser extent Desktop Intelligence. The
major difference between these two products’ multi-pass SQL capabilities is the
Query Drill document property available on a Web Intelligence document. This
property allows semi-additive measure solution to also be used within drilling
scenarios. Most of the techniques also apply whenever Crystal Reports utilizes a
Universe as a data source. Keep in mind that Crystal Reports does not have the
ability to combine the multiple result sets, one for each generated SQL
statement, returned by the database Since many of the multi-pass solutions lead
to the generation of multiple SQL statements, the Universe parameter
JOIN_BY_SQL needs to be set to Yes.. With this setting the multiple SQL
statements are submitted to the database as one statement and the database
returns one result set. With this setting in place, Crystal Reports using the
Universe as its data source should be able to take advantage of the multi-pass
scenarios discussed.

Query as a Web Service, QaaWS, also utilizes Universes via a query panel.
More like Web Intelligence and not Crystal Reports, QaaWS does have the ability
to combine multiple result sets therefore the JOIN_BY_SQL parameter can be
Yes or No. QaaWS creates a web service which returns data but has no useful
data display capabilities on its own. For data visualization QaaWS is often paired
with Crystal Xcelsius. Xcelsius can access data in many ways in addition to web
services. But since the focal point of this paper has been primarily on Universe
development, the combination of QaaWS and Xcelsius will be highlighted.

Xcelsius consumes the data returned from QaaWS. Crystal Xcelsius offers a
different paradigm from the reporting tools already reviewed. Xcelsius does offer
the ability to temporarily store query results, use previous query results as input
to later queries, and post query data manipulation. Having a Universe which has
implemented the multi-pass techniques eases the development of Xcelsius
models. However Xcelsius is designed to for data visualization. For optimal
performance its queries should be specific and return at most a few hundred
rows of data. This is not to imply that Xcelsius can not be used to return detail
level data. As seen in Figure 184, Xcelsius can effectively be used to show detail
level data. Through a series of user interactions granular detail data is being
retrieved without having to return an excessive number of rows of data. The drill
actions of the user effectively limit the scope of the query.

Figure 184: Xcelsius retrieving detail level data

For these reasons use of Xcelsius is very different from the reporting products.
For simplicity each of the four multi-pass situations will be reviewed.

Sharing dimensions across multiple fact tables
The Universe approach used to handle this situation is considered best practice
for Universe design. There is seldom a reason to bypass the use the contexts
and/or the enablement of the Universe parameter setting for Multiple SQL
statements for each measure (Figure 13). Unlike Crystal Reports, the setting of
the JOIN_BY_SQL parameter is irrelevant. QaaWS is able to manage multiple
SQL generation as long as the multiple result sets are joined and not
synchronized. The most common situation in which result sets are synchronized
occurs when all requested dimensions are not available in all contexts utilized in
the query. In these situations QaaWS will return the following error message:
“The query you built has incompatible objects. Make sure the objects are
compatible.” Whenever result sets have to be synchronized, the setting of
JOIN_BY_SQL is ignored. As QaaWS queries for Xcelsius tend to be very
specific, usually involving one or two dimensions at a time (Figure 185), the
likelihood of encountering synchronized queries is low. The Xcelsius example in
Figure 184 allows the end user to select the desired dimension for the query. In
this model, the technique limits the query to one time period, as indicated by
2006-Q2, and one other dimension such as Item. So this model effectively limits
the query to one measure (number of calls) and one dimension (item) in the
select clause and one other dimension (time, 2006-Q2) in the where clause.

Figure 185: Xcelsius model drill into measures as of end of quarter

An alternative is to manually split the query into one query per fact table. In order
to prevent too many queries from executing at once the queries should be
executed serially and not in parallel. Each result set would then be stored within
the Xcelsius model. The measures returned would need to be synchronized with
the returned dimensions using the Excel functions of match, index, etc. Due to
the complexity of this alternative, utilizing proper Universe design is preferred.

Mixing the grains of measurement in the same query
Often an Xcelsius model will offer the user the opportunity to indicate which time
span to be shown (Figure 186). It is common for the end user to be presented
with a set of radio buttons as a selector. For example, the buttons may offer
current year, current month, and last year as options. There are really two
solutions to this.

Figure 186: Xcelsius model allowing selection of timeframe for a measure

The first is for Xcelsius to execute a query every time the user alters the desired
timeframe. For example the model may initially show the number of sales calls
made for the current year. If the user then elects to see the sales calls for the
current month, a new query is then executed. This option effectively restricts the
query to a single timeframe eliminating the need for multi-pass SQL. The
downside to this option is that if the user then elects to return to the current year
view that query has to be re-executed.

The alternative is to have all possible timeframes returned when the model is
loaded. The results are then cached within the model and displayed according to
the user selection. Continuing with the example above, the number of sales calls
for the current year, current month, and last year are retrieved and stored within
the model when the model is initially loaded. As the user alters the view from
current year to current month to last year no additional queries are execute. The
proper timeframe is obtained from the results of the initial query. As there is not
any database wait time as the timeframe is altered, response time tends to be
quicker but it may take a bit longer for the model to initially load. One must
examine the expected use of the model to make a proper decision on this classic
tradeoff.

 The remaining question is how to retrieve the multiple timeframes at model load
time. The two options are to execute a separate QaaWS for each timeframe or a
single QaaWS that utilizes a Universe built with techniques already discussed.
Having several separate, specific QaaWS may lead to reuse of those web
services but then there are many web services that have to be maintained.

Conversely having a single web service to maintain is nice but one may not be
able to reuse it as often as desired. Another classic tradeoff encountered.

Defined calculations that require an end result as one of its factors
Calculations created within Xcelsius are subject to the operations available within
Excel. Since retrieved data is stored within memory of an Xcelsius model,
calculations can be based upon the end results of the query. For example, if a
ratio of sales calls by category against the total number of sales calls is needed,
the web service can return sales calls by category. Once returned these totals
can be summed within the model to obtain the total number of sales calls which
is then used against the totals by category to calculate the desired ratio. Similar
to creating variables in Web Intelligence or Desktop Intelligence, this option also
has the same issues. There is no reuse possible between Xcelsius models and
this methodology leaves open the possibility of two different but valid calculations
being named the same.

Need of semi-additive measures
User interaction with Xcelsius allows specific queries to be executed. When
semi-additive measures are part of the visualization the user must specify the
desired timeframe as shown in Figure 185. The selection of the timeframe can
then be used execute the proper query.

Analyzing a subset of data
The Xeclsius model can be presented to allow the end user to specify various
filters to add to a query. The user may elect to have one query return all the
results without any filtering. For the comparison query, options may allow the use
to choose from a wide array of choices. For example, in Figure 186 the user has
the option to choose from Open or Closed cases. Thus, options can be
presented to the end user that manipulate the query on the fly.

The question of dealing with multi-pass SQL depends as much on its definition
as it does the capabilities of Business Objects. Business Objects can definitely
return the results that necessitate the business need for multi-pass SQL. Before
the advent of query and reporting tools, hand coded SQL was the answer for
retrieving any information from a database. When hand coding SQL, the solution
was to store intermediate results into temporary tables and pass the database
again. Once all database passes were complete, the final result was obtained
using the information accumulated in the temporary tables. The advanced query
techniques employed by Business Objects circumvents this traditional approach.
However, thinking in terms of the traditional approach can often aid in the
development of derived tables and how to use them. The burden of solving a
multi-pass situation shifts from being 100% database driven as in the hand
coding scenario to a shared solution between the database and the query
engine. The degree of the shift depends upon universe design, parameter
settings, and the reporting requirements. As in other issues, the focus should be

on solving the business problem and not the technique. Within Business Objects
the multi-pass SQL problem can be solved without employing temporary tables
as a traditionalist may expect. And usually results in a very well perform solution.

Appendix A – BOE Release Dependency

All the information and examples contained within this document are based upon
Business Objects Enterprise XIr2. The service pack (SP) level is at SP2 or
higher. At this time Business Objects Enterprise 3.0 has just been released. BOE
3.0 has new features that impact multi-pass SQL implementation. A revision of
this paper is currently planned. None of the features in BOE 3.0 render the
techniques reviewed obsolete. The additional features ease multi-pass SQL
implementation and provide new techniques that can simplify the process.

Footnotes

1 http://www.dbmsmag.com/9702d05.html
Features for Query Tools
DBMS - February 1997
Ralph Kimball

2 http://www.olapreport.com/Architectures.htm
Nigel Pendse,. Last updated on June 27, 2006.

3 http://kimballgroup.com/html/designtipsPDF/DesignTips2001/KimballDT29Graceful.pdf

Kimball Design Tip #29: Graceful Modifications To Existing Fact and Dimension
Tables

4 http://whitepapers.zdnet.co.uk/0,1000000651,260002629p,00.htm
Derived Tables and the NCR-MicroStrategy Decision Support System
DM Review
November 1999

